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Resumo

In a general Hausdorff topological vector space E, we associate
to a given nonempty closed set S ⊂ E and a bounded closed set Ω ⊂
E, the minimal time function TS,Ω defined by TS,Ω(x) := inf{t >
0 : S ∩ (x + tΩ) 6= ∅}. The study of this function has been the
subject of various recent works (see [3, 4, 5, 6, 8, 9, 10] and the
references therein). The main objective of this work is in this vein.
We characterize, for a given Ω, the class of all closed sets S in E for
which TS,Ω is directionally Lipschitz in the sense of Rockafellar [12].
Those sets S are called Ω-epi-Lipschitz. This class of sets covers
three important classes of sets: epi-Lipschitz sets introduced in [12],
compactly epi-Lipschitz sets introduced in [2], and K-directional
Lipschitz sets introduced recently in [7]. Various characterizations of
this class have been established. In particular, we characterize the Ω-
epi-Lipschitz sets by the nonemptiness of a new tangent cone, called
Ω-hypertangent cone. As for epi-Lipschitz sets in Rockafellar [11]
we characterize the new class of Ω-epi-Lipschitz sets with the help
of other cones. The spacial case of closed convex sets is also studied.
Our main results extend various existing results proved in [1, 7] from
Banach spaces and normed spaces to Hausdorff topological vector
spaces.
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